Changes in State (F)

1. A student studies how the temperature falls when a liquid cools.

What is happening at point \mathbf{X} on the graph?

A Boiling
B Freezing
C Melting
D Subliming

Your answer
2. A wooden block has a mass of 2 kg and a specific heat capacity of $2000 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$.

Calculate the energy needed to raise its temperature by $6^{\circ} \mathrm{C}$.
Use the equation:

Change in thermal energy $=$ Mass \times Specific Heat Capacity \times Change in Temperature

A 1200 J
B 2400 J
C 12000 J
D 24000 J
3. Energy is needed to change ice into water.

Calculate the energy needed to change 5 kg of ice into water.
Use an equation from the data sheet to help you.
Specific latent heat of melting $=3.34 \times 10^{5} \mathrm{~J} / \mathrm{kg}$.

A 16.7 J
B $\quad 1670 \mathrm{~J}$
C $\quad 1670000 \mathrm{~J}$
D 1670000000 J

Your answer

4 (a). A student completes an experiment to find the specific heat capacity of a metal.

i. The student takes voltage and current measurements.

Suggest three other measurements they need to take?
\qquad
\qquad
\qquad
ii. Describe how these measurements could be used to determine the specific heat capacity of the metal.
\qquad
\qquad
(b). The value obtained from the experiment is much higher than expected.

Suggest two reasons how this could have occurred and suggest two improvements to the experimental procedure.
\qquad
\qquad
\qquad
\qquad
\qquad

5 (a). Alex has two radiators in her home. They are filled with 10 kg of different liquids.

The table below shows information about oil and water.

Material	Specific heat capacity $\left(\mathbf{J} / \mathrm{kg}^{\circ} \mathrm{C}\right)$	Freezing point $\left({ }^{\circ} \mathrm{C}\right)$	Boiling point $\left({ }^{\circ} \mathrm{C}\right)$
Oil	1700	-24	250
Water	4200	0	100

Alex's conservatory can be very cold.
Sometimes it can get as low as $-6^{\circ} \mathrm{C}$.
Alex thinks that the oil radiator may be better for the conservatory.
Suggest why.
\qquad
\qquad
(b). Radiators in a home have a 'cut-out' which prevents them getting hotter than $60^{\circ} \mathrm{C}$.

Suggest why.
\qquad
\qquad
(c). Alex does a calculation.

She knows that the oil heater produces 800 J of energy each second.
Calculate the energy produced by the oil heater in 10 minutes.
\qquad
\qquad
answer:
(d).
i. Alex wants the oil heater to heat up by $40^{\circ} \mathrm{C}$.

How much energy is needed? Show your working.
\qquad
\qquad
\qquad
answer:
[2]
ii. She supplies enough energy to heat up the oil radiator by $40^{\circ} \mathrm{C}$ but it only heats up to $32^{\circ} \mathrm{C}$. Suggest two reasons why.
\qquad
\qquad

6 (a). A student completes an experiment to find the specific heat capacity of water.

He heats up 1 kg of water, using an immersion heater. He measures the temperature rise and calculates the specific heat capacity of the water.

Attempt	Energy supplied (\mathbf{J})	Temperature rise $\left({ }^{\circ} \mathrm{C}\right)$	Specific heat capacity $\left(\mathbf{J} / \mathbf{k g}{ }^{\circ} \mathrm{C}\right)$
$\mathbf{1}$	10000	2	5000
$\mathbf{2}$	21000	4	5250
$\mathbf{3}$	44000	8	5500

i. Calculate the mean specific heat capacity.

Answer = \qquad $\mathrm{J} / \mathrm{kg}{ }^{\circ} \mathrm{C}[1]$
ii. Describe the conclusions that can be drawn from the data.
\qquad
\qquad
\qquad
\qquad
(b). The actual value for the specific heat capacity of water is $4200 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$.
i. Explain why the mean specific heat capacity calculated in (a)(i) is higher than the actual value.
\qquad
\qquad
ii. Write down two problems with this experiment and suggest how they could be solved.

Use the diagram and results table to help you.

Problem 1 \qquad
\qquad

Solution \qquad
\qquad

Problem 2 \qquad
\qquad

Solution \qquad
\qquad
[4]

7 (a). Describe one difference between a physical change and a chemical change.
\qquad
\qquad [1]
(b). A student puts an ice cube into a beaker. The mass of the ice cube is 40 g .

The ice cube melts.
i. Write down the mass of the water produced.

Mass =
g [1]
ii. Explain your answer to (i).
\qquad

\qquad
(c). A student does an experiment to find the difference between the specific heat capacities of seawater and tap water.

The student places a heater and a thermometer into two beakers, A and B. Look at the diagram.

i. There are 5 steps to the method for this experiment.

Complete the missing steps for this method.

Step 1 - Put seawater into beaker \mathbf{A} and tap water into beaker \mathbf{B}.

Step $2-$ \qquad

Step 3 - \qquad

Step 4 - \qquad
Step 5 - Calculate the temperature change of beaker A and beaker B.
ii. Suggest one mistake the student made when choosing their equipment.
iii. Suggest two improvements to the method followed.

1

2 \qquad
8. *A student does an experiment using 0.2 kg of water.

Here is some information from the experiment:

The aim is to find the energy needed to raise the temperature of the water by $20^{\circ} \mathrm{C}$.
An electrical heater is used to heat the water. The temperature of the water increases by $20^{\circ} \mathrm{C}$.

The specific heat capacity of water is $4200 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$.

Describe how the student should carry out the experiment, including the equipment used.

In your answer calculate the change in internal energy for the water.
You may include a diagram in your answer.
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

